FOR THE RECORD

Daixin Huang, ${ }^{1}$ Ph.D.; Chuanhong Zhu, ${ }^{2}$ Ph.D.; He Jiang, ${ }^{1}$ M.D.; Hui Yin, ${ }^{1}$ M.D.; Xiandun Zhai, ${ }^{1}$ M.D.; and Qingen Yang, ${ }^{1}$ B.S.

# Haplotype Distribution of the Multi-copy Y-STR Loci DYS385, DYS459 and DYS464 in Chinese Han Population 

## POPULATION: Chinese Han population

KEYWORDS: forensic science, Y chromosome, DYS385, DYS459, DYS464, haplotype, Han population, DNA typing, population genetics

EDTA-blood samples were collected from 176 healthy unrelated males of Han population living in Wuhan, China. DNA was extracted using Cheles- 100 method (1). PCR was performed in a total volume of $10 \mu \mathrm{~L}$ containing $2-5 \mathrm{ng}$ genomic DNA, $0.2 \mu \mathrm{M}$ each primer, 10 mM Tris- HCl buffer ( pH 8.3 ), $50 \mathrm{mM} \mathrm{KCl}, 1.5 \mathrm{mM} \mathrm{MgCl}_{2}$, $200 \mu \mathrm{M}$ each dNTP, and 1 U AmpliTaq Gold ${ }^{\circledR}$ DNA polymerase (Applied Biosystems, Foster City, CA). DYS459 and DYS464 were co-amplified in a duplex reaction and DYS385 was amplified in a singleples reaction. Primer sequences: DYS385: 5'-FAM-ag-catgggtgacagagcta-3', 5'-gccaattacatagtcctcctttc-3'; DYS459: 5'-FAM-caggtgaactggggtaaataat-3', $\quad 5^{\prime}$-gttgagcaacagagcaagactta-3'; DYS464: 5'-FAM-ctttgggctatgcctcagttt-3', 5'-gccatacctgggtaaca-gagagac- $3^{\prime}$. PCR cycling conditions: $95^{\circ} \mathrm{C}$ for 11 min soak, 30 cycles of 40 s at $94^{\circ} \mathrm{C}, 40 \mathrm{~s}$ at $60^{\circ} \mathrm{C}, 50 \mathrm{~s}$ at $72^{\circ} \mathrm{C}$ followed by a 6 min extension period at $72^{\circ} \mathrm{C}$. All loci were amplified in a GeneAmp PCR System 9700 (PE Applied Biosystems).

Detection of the amplified products was carried out using an ABI PRISM ${ }^{\circledR} 3100$ Genetic Analyzer (PE Applied Biosystems).

[^0]Samples ( $1 \mu \mathrm{~L}$ ) were mixed with Hi - $\mathrm{Di}^{\mathrm{TM}}$ formamide $(12 \mu \mathrm{~L})$ and the internal standard size (GS-500 ROX $0.4 \mu \mathrm{~L}$ ) and denatured at $95^{\circ} \mathrm{C}$ for 5 min . GeneMapper v3.1 analysis software was used for the interpretation of the results. To all samples, our own allele ladders were used for allele designation. The gene or haplotype diversity was estimated according to Nei (2).

The complete dataset is available to any interested researcher upon request to the authors.

## References

1. Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991;10:506-13.
[PubMed]
2. Nei M. Molecular evolutionary genetics. New York: Columbia University Press, 1987.
[^1]TABLE 1-Genotype frequencies and gene diversity of three multi-copy Y-STR loci in Wuhan Han population.

| DYS459 |  | DYS385 |  | DYS464 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Genotype | Frequency | Genotype | Frequency | Genotype | Frequency |
| 7-9 | 0.1534 | 8-17 | 0.0057 | 11-12-15-16 | 0.0057 |
| 8 | 0.1136 | 9 | 0.0284 | 11-12-15-17 | 0.0057 |
| 8-9 | 0.0511 | 9-10 | 0.0284 | 11-13-14-15 | 0.0057 |
| 8-10 | 0.0057 | 9-11 | 0.0170 | 11-13-15-16 | 0.0057 |
| 9 | 0.5966 | 9-15 | 0.0114 | 12 | 0.0170 |
| 9-10 | 0.0568 | 9-16 | 0.0170 | 12-13-14 | 0.0284 |
| 10 | 0.0227 | 9-17 | 0.0341 | 12-13-14-15 | 0.0852 |
|  |  | 9-18 | 0.0114 | 12-13-14-16 | 0.0455 |
|  |  | 9-19 | 0.0057 | 12-13-14-17 | 0.0114 |
|  |  | 10 | 0.0284 | 12-13-15 | 0.0284 |
|  |  | 10-11 | 0.0057 | 12-13-15-16 | 0.0057 |
|  |  | 10-12 | 0.0057 | 12-13-15-17 | 0.0057 |
|  |  | 10-14 | 0.0568 | 12-13-16 | 0.0170 |
|  |  | 10-15 | 0.0284 | 12-13-16-17 | 0.0057 |
|  |  | 10-16 | 0.0511 | 12-13-17 | 0.0057 |
|  |  | 10-17 | 0.0568 | 12-14-15 | 0.0284 |
|  |  | 10-18 | 0.0227 | 12-14-15-16 | 0.0170 |
|  |  | 10-19 | 0.0057 | 12-14-16 | 0.0057 |
|  |  | 10-20 | 0.0057 | 12-14-16-17 | 0.0114 |
|  |  | 10-21 | 0.0057 | 12-15 | 0.0114 |
|  |  | 11 | 0.1250 | 12-15-16-17 | 0.0057 |
|  |  | 11-12 | 0.0227 | 13 | 0.0114 |
|  |  | 11-13 | 0.0057 | 13-14 | 0.1364 |
|  |  | 11-14 | 0.0114 | 13-14-15 | 0.0795 |
|  |  | 11-15 | 0.0227 | 13-14-15-16 | 0.0057 |
|  |  | 11-16 | 0.0455 | 13-14-15-17 | 0.0114 |
|  |  | 11-17 | 0.0852 | 13-14-15-18 | 0.0057 |
|  |  | 11-18 | 0.0398 | 13-14-16 | 0.0227 |
|  |  | 11-19 | 0.0227 | 13-14-16-19 | 0.0057 |
|  |  | 11-20 | 0.0057 | 13-14-17 | 0.0114 |
|  |  | 12-13 | 0.0057 | 13-14-17-18 | 0.0057 |
|  |  | 12-14 | 0.0057 | 13-15 | 0.0568 |
|  |  | 12-15 | 0.0227 | 13-15-16 | 0.0057 |
|  |  | 12-16 | 0.0341 | 13-15-16-17 | 0.0057 |
|  |  | 12-17 | 0.0170 | 13-15-17-19 | 0.0057 |
|  |  | 12-18 | 0.0057 | 13-16 | 0.0114 |
|  |  | 12-19 | 0.0114 | 13-16-17 | 0.0284 |
|  |  | 12-21 | 0.0057 | 13-16-18 | 0.0170 |
|  |  | 13-16 | 0.0057 | 13-17-18 | 0.0227 |
|  |  | 13-17 | 0.0170 | 14-15 | 0.0398 |
|  |  | 13-18 | 0.0170 | 14-15-16 | 0.0170 |
|  |  | 13-20 | 0.0057 | 14-15-17 | 0.0057 |
|  |  | 13-21 | 0.0057 | 14-15-18-19 | 0.0057 |
|  |  | 14-18 | 0.0057 | 14-16 | 0.0398 |
|  |  | 14-19 | 0.0057 | 14-16-17 | 0.0057 |
|  |  | 17-18 | 0.0057 | 14-16-18 | 0.0057 |
|  |  | 18 | 0.0057 | 14-17 | 0.0284 |
|  |  |  |  | 15 | 0.0227 |
|  |  |  |  | 15-16 | 0.0114 |
|  |  |  |  | 15-17 | 0.0057 |
|  |  |  |  | 16 | 0.0057 |
|  | Gene diversity $=0.6047$ | Gene diversity $=0.9591$ |  | Gene diversity $=0.9560$ |  |

TABLE 2-Haplotype distribution of three multi-copy Y-STR loci in the population studied.

| Haplotype | DYS385 | DYS459 | DYS464 | $n$ | Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H1 | 8,17 | 9 | 13, 16, 18 | 1 | 0.0057 |
| H2 | 9 | 8 | 12, 13, 14, 16 | 2 | 0.0114 |
| H3 | 9 | 8 | 12, 13, 14, 17 | 1 | 0.0057 |
| H4 | 9 | 8 | 12, 13, 16 | 1 | 0.0057 |
| H5 | 9 | 9 | 14, 15 | 1 | 0.0057 |
| H6 | 9, 10 | 8 | 12, 13, 14, 16 | 2 | 0.0114 |
| H7 | 9, 10 | 9 | 12 | 2 | 0.0114 |
| H8 | 9, 10 | 9 | 13 | 1 | 0.0057 |
| H9 | 9,11 | 7, 9 | 13, 14 | 2 | 0.0114 |
| H10 | 9,11 | 9 | 12 | 1 | 0.0057 |
| H11 | 9,15 | 8 | 14, 16 | 1 | 0.0057 |
| H12 | 9,15 | 8, 9 | 13, 16 | 1 | 0.0057 |
| H13 | 9,16 | 8 | 12, 13, 14, 15 | 1 | 0.0057 |
| H14 | 9,16 | 8 | 12, 13, 14, 16 | 2 | 0.0114 |
| H15 | 9,17 | 8 | 12, 14, 15, 16 | 2 | 0.0114 |
| H16 | 9,17 | 8 | 12, 14, 16, 17 | 1 | 0.0057 |
| H17 | 9,17 | 9 | 13, 14, 15 | 1 | 0.0057 |
| H18 | 9,17 | 9 | 13, 14, 16 | 1 | 0.0057 |
| H19 | 9,17 | 9 | 13, 14, 16, 19 | 1 | 0.0057 |
| H20 | 9,18 | 8 | 16 | 1 | 0.0057 |
| H21 | 9,18 | 9 | 12, 13, 14 | 1 | 0.0057 |
| H22 | 9,19 | 8 | 12, 13, 14, 16 | 1 | 0.0057 |
| H23 | 10 | 7, 9 | 13, 14, 15 | 1 | 0.0057 |
| H24 | 10 | , | 13, 14, 15 | 1 | 0.0057 |
| H25 | 10 | , | 14, 15 | 1 | 0.0057 |
| H26 | 10 | 9, 10 | 13, 14, 15 | 1 | 0.0057 |
| H27 | 10 | 9, 10 | 13, 16, 17 | 1 | 0.0057 |
| H28 | 10, 11 | 9 | 13, 14, 15 | 1 | 0.0057 |
| H29 | 10, 12 | 7, 9 | 13, 15 | 1 | 0.0057 |
| H30 | 10, 14 | 9 | 12, 13, 16 | 2 | 0.0114 |
| H31 | 10, 14 | 9 | 13, 14, 15 | 4 | 0.0227 |
| H32 | 10, 14 | 9 | 13, 15 | 3 | 0.0170 |
| H33 | 10, 14 | 9 | 14, 15 | 1 | 0.0057 |
| H34 | 10, 15 | 9 | 12, 13, 14, 16 | 1 | 0.0057 |
| H35 | 10, 15 | 9 | 12, 13, 15 | 1 | 0.0057 |
| H36 | 10, 15 | 9 | 14, 15, 16 | 1 | 0.0057 |
| H37 | 10, 15 |  | 14, 17 | 1 | 0.0057 |
| H38 | 10, 15 | 9,10 | 13, 16, 18 | 1 | 0.0057 |
| H39 | 10, 16 | 8 | 14, 16 | 1 | 0.0057 |
| H40 | 10, 16 | 8, 9 | 14, 15, 17 | 1 | 0.0057 |
| H41 | 10, 16 | 8,9 | 14, 16 | 1 | 0.0057 |
| H42 | 10, 16 | 9 | 13 | 1 | 0.0057 |
| H43 | 10, 16 | 9 | 13, 14, 15 | 2 | 0.0114 |
| H44 | 10, 16 | 9 | 14, 15 | 1 | 0.0057 |
| H45 | 10, 16 | 9,10 | 13, 17, 18 | 2 | 0.0114 |
| H46 | 10, 17 | 8, 9 | 14, 16, 17 | 1 | 0.0057 |
| H47 | 10, 17 | 9 | 11, 12, 15, 16 | 1 | 0.0057 |
| H48 | 10, 17 | 9 | 11, 12, 15, 17 | 1 | 0.0057 |
| H49 | 10, 17 | 9 | 12, 13, 14, 15 | 2 | 0.0114 |
| H50 | 10, 17 | 9 | 12, 13, 15, 17 |  | 0.0057 |
| H51 | 10, 17 | 9 | 13, 14, 15, 17 | 2 | 0.0114 |
| H52 | 10, 17 | 9 | 13, 14, 17, 18 |  | 0.0057 |
| H53 | 10, 17 | 9 | 13, 17, 18 | 1 | 0.0057 |
| H54 | 10, 18 | 8 | 15, 16 | 1 | 0.0057 |
| H55 | 10,18 | 9 | 12, 13, 16, 17 | 1 | 0.0057 |
| H56 | 10, 18 | 9 | 13, 16, 17 | , | 0.0057 |
| H57 | 10,18 | 9 | 14, 16 | 1 | 0.0057 |
| H58 | 10, 19 | 9 | 13, 14, 15, 18 | , | 0.0057 |
| H59 | 10, 20 | 8 | 15, 16 | 1 | 0.0057 |
| H60 | 10, 21 | 9 | 13, 15, 17, 19 | 1 | 0.0057 |
| H61 | 11 | 7,9 | 12, 13, 14 | 1 | 0.0057 |
| H62 | 11 | 7,9 | 13, 14 | 15 | 0.0852 |
| H63 | 11 | 7,9 | 13, 14, 15 | 2 | 0.0114 |
| H64 | 11 | 7,9 | 13, 14, 16 | 1 | 0.0057 |
| H65 | 11 | 8 | 12, 14, 16, 17 | 1 | 0.0057 |
| H66 | 11 | 9 | 13, 14 | 1 | 0.0057 |
| H67 | 11 | 9 | 13, 15, 16 | , | 0.0057 |
| H68 | 11, 12 | 7,9 | 13, 14 | 3 | 0.0170 |
| H69 | 11, 12 | 9 | 14, 15 | 1 | 0.0057 |
| H70 | 11, 13 | 8, 9 | 13, 15 | 1 | 0.0057 |
| H71 | 11, 14 | 9 | 12, 13, 14, 15 | 1 | 0.0057 |
| H72 | 11, 14 | 9 | 13, 17, 18 | 1 | 0.0057 |

TABLE 2-Continued.

| Haplotype | DYS385 | DYS459 | DYS464 | $n$ | Frequency |
| :---: | :---: | :---: | :---: | :---: | :---: |
| H73 | 11, 15 | 9 | 12, 15 | 1 | 0.0057 |
| H74 | 11, 15 | 9 | 13, 15 | 2 | 0.0114 |
| H75 | 11, 15 | 9 | 14, 16 | 1 | 0.0057 |
| H76 | 11, 16 | 8, 9 | 12, 13, 14, 15 | 1 | 0.0057 |
| H77 | 11, 16 | 9 | 12, 13, 14 | 1 | 0.0057 |
| H78 | 11, 16 | 9 | 12, 13, 14, 15 | 2 | 0.0114 |
| H79 | 11, 16 | 9 | 12, 14, 15 | 2 | 0.0114 |
| H80 | 11, 16 | 9 | 13, 14 | 1 | 0.0057 |
| H81 | 11, 16 | 9 | 13, 16, 18 | 1 | 0.0057 |
| H82 | 11, 17 | 8, 10 | 12, 14, 15 | 1 | 0.0057 |
| H83 | 11, 17 | 9 | 11, 13, 14, 15 | 1 | 0.0057 |
| H84 | 11, 17 | 9 | 12, 13, 14 | 1 | 0.0057 |
| H85 | 11, 17 | 9 | 12, 13, 14, 15 | 3 | 0.0170 |
| H86 | 11, 17 | 9 | 12, 13, 15 | 2 | 0.0114 |
| H87 | 11, 17 | 9 | 12, 14, 15 | 1 | 0.0057 |
| H88 | 11, 17 | 9 | 13, 16, 17 | 2 | 0.0114 |
| H89 | 11, 17 | 9 | 14, 15, 18, 19 | 1 | 0.0057 |
| H90 | 11, 17 | 9 | 14, 16 | 2 | 0.0114 |
| H91 | 11, 17 | 9, 10 | 13, 14, 15 | 1 | 0.0057 |
| H92 | 11, 18 | 8,9 | 12, 13, 14, 15 | 1 | 0.0057 |
| H93 | 11, 18 | 9 | 12, 13, 14, 15 | 1 | 0.0057 |
| H94 | 11, 18 | 9 | 12, 13, 15 | 1 | 0.0057 |
| H95 | 11, 18 | 9 | 12, 15 | 1 | 0.0057 |
| H96 | 11, 18 | 9 | 13, 15, 16, 17 | 1 | 0.0057 |
| H97 | 11, 18 |  | 13, 16, 17 | 1 | 0.0057 |
| H98 | 11, 18 | 9, 10 | 12, 14, 15, 16 | 1 | 0.0057 |
| H99 | 11, 19 | 8, 9 | 13, 15 | 1 | 0.0057 |
| H100 | 11, 19 | 9 | 13, 16 | 1 | 0.0057 |
| H101 | 11, 19 | 9 | 14, 17 | 2 | 0.0114 |
| H102 | 11, 20 | 7 | 12, 13, 15, 16 | 1 | 0.0057 |
| H103 | 12, 13 | 7, 9 | 13, 14 | 1 | 0.0057 |
| H104 | 12, 14 | 9 | 12, 13, 14, 17 | 1 | 0.0057 |
| H105 | 12, 15 | 9 | 12, 15, 16, 17 | 1 | 0.0057 |
| H106 | 12, 15 | 9 | 13, 14, 16 | 1 | 0.0057 |
| H107 | 12, 15 | 9 | 14, 15 | 1 | 0.0057 |
| H108 | 12, 15 | 9 | 14, 15, 16 | 1 | 0.0057 |
| H109 | 12, 16 | 8 | 12, 14, 16 | 1 | 0.0057 |
| H110 | 12, 16 | 9 | 12, 13, 14 | 1 | 0.0057 |
| H111 | 12, 16 | 9 | 12, 13, 14, 15 | 2 | 0.0114 |
| H112 | 12, 16 | 9 | 13, 14, 16 | 1 | 0.0057 |
| H113 | 12, 16 | 9 | 14, 15, 16 | 1 | 0.0057 |
| H114 | 12, 17 | 9 | 12, 13, 14, 15 | 1 | 0.0057 |
| H115 | 12, 17 | 9 | 13, 14, 17 | 1 | 0.0057 |
| H116 | 12, 17 | 9 | 14, 16, 18 | 1 | 0.0057 |
| H117 | 12, 18 | 8, 9 | 13, 15 | 1 | 0.0057 |
| H118 | 12, 19 | 9 | 15, 17 | 1 | 0.0057 |
| H119 | 12, 19 | 10 | 15 | 1 | 0.0057 |
| H120 | 12, 21 | 9 | 12, 13, 17 | 1 | 0.0057 |
| H121 | 13, 16 | 9 | 13, 14, 17 | 1 | 0.0057 |
| H122 | 13, 17 | 9 | 13, 14, 15, 16 | 1 | 0.0057 |
| H123 | 13, 17 | 9 | 14, 17 | 1 | 0.0057 |
| H124 | 13, 17 | 9, 10 | 12, 14, 15 | 1 | 0.0057 |
| H125 | 13, 18 | 9 | 14, 15 | 1 | 0.0057 |
| H126 | 13, 18 | 9, 10 | 12, 13, 15 | 1 | 0.0057 |
| H127 | 13, 18 | 10 | 15 | 1 | 0.0057 |
| H128 | 13, 20 | 10 | 15 | 1 | 0.0057 |
| H129 | 13, 21 | 9, 10 | 11, 13, 15, 16 | 1 | 0.0057 |
| H130 | 14, 18 | 10 | 15 | 1 | 0.0057 |
| H131 | 14, 19 | 9 | 14, 17 | 1 | 0.0057 |
| H132 | 17, 18 | 9 | 13, 14 | 1 | 0.0057 |
| Haplotype diversity $=0.9909$ |  | 9 | 13, 15 | 1 | 0.0057 |
|  |  |  |  |  |  |


[^0]:    ${ }^{1}$ Faculty of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China.
    ${ }^{2}$ Wuhan Institute of Criminal Science and Technology, Wuhan 430019, P. R. China.

[^1]:    Additional information and reprint requests:
    Daixin Huang, Ph.D.
    Faculty of Forensic Medicine
    Tongji Medical College
    Huazhong University of Science and Technology
    No. 13, Hongkong Road
    Wuhan 430030, P. R. China
    E-mail: huangdaixin@hotmail.com

